We were inspired by Dr Matthew Stoltzfus’s approach in flipped classrooms, here at KFUPM we adapted similar approach. Dr. Fus thankfully agreed to share his video lectures with us.
The following videos are organised by sections of “Chemistry, by Julia Burdge”

19.1 Introduction/Balancing Redox Reactions – Part 1

Electrochemistry is the study of chemical and electrical energy. The two processes we will discuss are the generation of an electrical current from a chemical (redox) reaction (this is a spontaneous process) and the use of an electric current to produce a chemical change (a nonspontaneous process).

19.1 Introduction/Balancing Redox Reactions – Part 2

19.1 Introduction/Balancing Redox Reactions – Part 3

Work can be done when electrons are transferred through a wire. The amount of work depends on the potential difference between the anode and cathode, and we can determine the relationship between the Cell Potential and the Gibbs Free Energy.

19.2 Galvanic/Voltaic Cell – Part 1

19.2 Galvanic/Voltaic Cell – Part 2

19.2 Galvanic/Voltaic Cell – Part 3

When you describe voltaic cells, be sure to keep a few things in mind:
*When a half reaction is reversed, the sign of the standard cell potential is reversed.
*The standard cell potential is an intensive property.
*To run spontaneously, the standard cell potential must be positive.
*A chemically inert conductor is required if none of the substances participating in the half reaction is a conducting solid.

19.2 Galvanic/Voltaic Cell – Part 4


19.3 Standard Reduction Potential

19.4 Spontaneity of Redox Reactions Under Standard-State Conditions

All the calculations to this point have been calculated under standard conditions. When the concentrations of the solutions in the anode and cathode compartment are changed, the cell potential will change. This relationship, referred to as the Nerst equation, will allow us to calculate the cell potential under non-standard conditions.

19.5 Spontaneity of Redox Reactions Under Conditions Other Than Standard-State – Part 1

19.5 Spontaneity of Redox Reactions Under Conditions Other Than Standard-State – Part 2

In a Galvanic/Voltaic Cell, a spontaneous redox reaction produces a current (electricity). In an electrolytic cell, electrical energy is needed to produce a chemical change. During electrolysis, the electrical energy forces a non-spontaneous reaction to occur.

19.7 Electrolysis – Part 1

In an electrolytic process, we can use the stoichiometric relationships of an electrolytic process to calculate various electrolytic properties. In the first example shown below, we will calculate the mass of solid copper that is plated when a current of 10 amps is passed for 30 minutes through a Cu2+(aq) solution.

19.7 Electrolysis – Part 2

The next example shows how long a current of 5 amps must be applied to a solution of Ag+ to produce 10.5 grams of Ag(s).

19.7 Electrolysis – Part 3

Producing H2(g) has gained widespread attention from its potential application as a source of alternate energy. The following example shows why the electrolysis of water is not an effective way to produce hydrogen gas and shows how much hydrogen gas is liberated during the passage of 2 amps for 30 minutes.

19.7 Electrolysis – Part 4

We can also calculate the concentration of a particular ion remaining in a solution after a current has been passed through its solution. In this case, the [Cu2+] remaining in 335 mL of solution that was originally 0.215 M copper(II) sulfate after the passage of 2.17 amps for 235 seconds, can be calculated.

19.7 Electrolysis – Part 5